If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+40t+24=24
We move all terms to the left:
-16t^2+40t+24-(24)=0
We add all the numbers together, and all the variables
-16t^2+40t=0
a = -16; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·(-16)·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*-16}=\frac{-80}{-32} =2+1/2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*-16}=\frac{0}{-32} =0 $
| 2/8x+7=7x+2/8 | | 2t+18-t=-3 | | -4(2p+6)=-28-7p | | -9-2g=-g | | 3g-36=16g+4 | | -11=5(y-7)-8y | | 1+x/2=-7 | | -6f=-8-7f | | 2x+1+x+2x-7=180 | | 21=-8-29x | | |4x+7|=|3x-28| | | 5x+x+x-2=61 | | 2x+7+3x-4=75 | | -2(4v+2)=-6(v-2)-4v | | 130+0.6x=50+0.8x | | 3g+36=16g+4 | | 9x+8-7x+2=90 | | 2(4x-2)+(5x)=90 | | 6(2y−3)= 6 | | a(20)+10(319-a)=5860 | | -8(1+4n)=22-2n | | (7x-3)/2=4 | | -7(n)=n+4 | | a(20)+(319-a)=5860 | | (-2/5)+(2/3w)=-3/2 | | 3/5x-1.5=6/5x+12 | | 8(x-2)-(x+4)=20+x | | 15y-35=5(3y-7) | | 13u−4u−6=3 | | -3(2x+1)=4(2x+3)-1 | | 3y=(8-12y/4)+12 | | 8+17=-5(2x-5) |